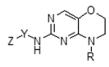
ACS Medicinal Chemistry Letters

Fused Morphlinopyrimidines and Methods of Use Thereof

Benjamin Blass*


Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States

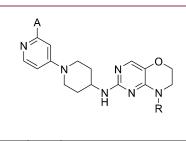
Title:	Fused Morphlinopyrimidines and Methods of Use Thereof						
Patent/Patent Application Number:	WO2015066696A1	Publication date:	May 7th, 2015				
Priority Application:	US 62/047,215	Priority date:	September 8, 2014				
	US 61/899,616		November 4, 2013				
Inventors:	Burnett, D. A.; Bursavich, M. G.; Mcriner, A. J.						
Assignee Company:	Forum Pharmaceuticals, Inc.						
Disease Area:	Alzheimer's disease	Biological Target:	γ -Secretase modulation				
Summary:	Alzheimer's disease is a progressive, neurodegenerative disease that impacts the lives of over 45 million people globally. In the						
	absence of effective treatments, it is expected that the patient population will exceed 75 million by 2030 and increase to						
	over 135 million by 2050. Despite decades of research, the underlying causes of Alzheimer's disease remain a mystery and						
	efforts to develop novel therapies for this debilitating condition have been largely unsuccessful. A major area of research						
	has been and continues to be the formation of senile plaques and neurofibrillary tangles in the cortical and subcortical						
	regions of the brain. These features are associated with the degeneration and loss of neurons, and are known to contain						
	eta-amyloid and tau proteins, respectively. It has been theorized that preventing the formation and/or clearing these						
	material from the brain will arrest the progression of Alzheimer's disease. Previous reports have demonstrated that						
	eta-amyloid plaques are formed from the A eta 42 protein, a cleavage product of the amyloid precursor protein (APP). This						
	protein is produced from APP as a result of sequential cleavage of APP by eta -secretase and γ -secretase. Initial cleavage of						
	APP by β -secretase produces soluble β -APP and a membrane bound fragment designated C-99. Further processing of						

and are potentially useful for the treatment of Alzheimer's disease.

Important Compound Classes:

Definitions:

C-99 by γ -secretase cleaves this protein and releases A β 42, which has a high propensity to aggregate and is the main component of senile plaques. The present application discloses a series of compounds that selectively inhibit γ -secretase


- R is phenyl, $-C_1-C_4$ alkylene-phenyl or $-C_1-C_6$ alkyl, each of which is unsubstituted or substituted with one or more substituents independently selected from the group consisting of -halo, -CN, $-NH_2$, $-C_1-C_4$ alkyl, halo-substituted $C_1 - C_4 alkyl, amino-substituted C_1 - C_4 alkyl, -NH - C_1 - C_4 alkyl, -NHC(O) - C_1 - C_4 alkyl, -C(O)N(C_1 - C_4 alkyl)_2, C_1 - C_4 alkyl, -NHC(O) - C_4 - C_4 alkyl, -NHC(O) - C_4 - C$ $-C(O)NH-C_1-C_4alkyl, -C(O)N(C_1-C_4alkyl)_2, hydroxy-substituted C_1-C_4alkyl, -S(O)_2-C_1-C_4alkyl, -S(O)_2-C_1-C_4-C_1-C_4alkyl, -S(O)_2-C_1-C_4-C_1-C_4-C_1-C_1-C_4-C_1-C_$ $halosubstituted \ C_1-C_4alkyl, \ -S(O)_2-NH-C_1-C_4alkyl, \ -S(O)_2-N(C_1-C_4alkyl)_2, \ -NH-S(O)_2-C_1-C_4alkyl, \ -S(O)_2-C_1-C_4alkyl, \ -S(O)_2-N(C_1-C_4alkyl)_2, \ -NH-S(O)_2-C_1-C_4alkyl, \ -S(O)_2-N(C_1-C_4alkyl)_2, \ -NH-S(O)_2-C_1-C_4alkyl, \ -S(O)_2-N(C_1-C_4alkyl)_2, \ -NH-S(O)_2-C_1-C_4alkyl, \ -S(O)_2-N(C_1-C_4alkyl)_2, \ -S(O)_2-N(C_1-C_4$ $-N(C_1-C_4alkyl)-S(O)_2-C_1-C_4alkyl, -C_1-C_4alkoxy, halo-substituted C_1-C_4alkoxy, 3- to 7-membered$ monocyclic heterocycle, C_3-C_8 monocyclic cycloalkyl, and $-C(O)NH_2$;
- Y is 4- to 6-membered nitrogen-containing nonaromatic heterocycle, each of which is unsubstituted or substituted with one or more substituents independently selected from the group consisting of -halo, oxo, $-C_1-C_4$ alkoxy, halosubstituted $C_1 - C_4$ alkoxy, $-C_1 - C_4$ alkyl, halo-substituted $C_1 - C_4$ alkyl, amino-substituted $C_1 - C_4$ alkoxy, -CN, (C₁-C₄alkyl)₂N-C₁-C₄alkoxy, -NH-C₁-C₄alkyl, -OH, and -NH₂;
- Z is 5- to 6-membered nitrogen-containing heterocycle, which is unsubstituted or substituted with one or more substituents independently selected from the group consisting of -halo, $-NH_2$, -OH, $-C_1-C_4$ alkyl, halo-substituted C_1-C_4 alkyl, -C1-C4alkoxy, and 3- to 7-membered monocyclic heterocycle.

Received: June 28, 2015 Published: July 13, 2015

ACS Publications © 2015 American Chemical Society

Key Structures:

Entry	A	R
16	OCH ₃	3,5-difluorophenyl
19	OCH ₃	phenyl
24	Cl	phenyl
25	OCH ₃	2-methylpheyl
28	OCH ₃	2-chlorophenyl
30	OCH ₃	2-trifluoromethoxyphenyl
34	Cl	2-methylphenyl
61	OCH ₃	3,4,5-trifluorophenyl
62	OCH ₃	2,4-difluorophenyl
63	OCH ₃	4-chlorophenyl
65	OCH ₃	2-trifluoromethyl-4-fluorophenyl
68	OCH ₃	4-fluorophenyl

Recent Review Articles:	Hall, A.; Patel, T. R. γ -Secretase modulators: current status and future directions. <i>Prog. Med. Chem.</i> 2014 , 53, 101–14						
	Wolfe, M. S.; Selkoe, D. J. γ-Secretase: A horseshoe structure brings good luck. <i>Cell</i> 2014 , <i>158</i> (2), 247–249						
	Gertsik, N.; Chiu, D.; Li, Y. M. Complex regulation of γ-secretase: from obligatory to modulatory subunits. <i>Fr</i> <i>Neurosci.</i> 2014 , <i>6</i> (342), 1–10.						
	Mikulca, J. A.; Nguyen, V.; Gajdosik, D. A.; Teklu, S. G.; Giunta, E. A.; Lessa, E. A.; Tran, C. H.; Terak, E. C.; Raf Potential novel targets for Alzheimer pharmacotherapy: II. Update on secretase inhibitors and related approaches <i>Pharm. Ther.</i> 2014, 39 (1), 25–37.						
Dislassias I Assault							
Biological Assay:	In vitro cell screening and quantification of $A\beta(1-x)$ and $A\beta(1-42)$ Peptides:						
	Human neuroglioma H4 cells were transfected with a pcDNA3.1 plasmid expressing human wild type APP751 cDNA, an a stable cell line was generated using G418 selection. Cells are plated at 15,000 cells/well in Costar 96-well plates an placed at 37 °C and 5% CO ₂ . Six hours after plating, cells are washed three times with Pro293 chemically defined mediur followed by addition of compounds (0.003–10 μM, final DMSO concentration of 0.33%). Plates were incubate						
	overnight (16–18	8 h), and supernatan	nt was removed for q	uantification of A eta	peptides by sandwic	h ELISA.	
	ELISA measurements of $A\beta$ peptides:						
	$A\beta$ peptide levels were quantified by sandwich ELISA. Ninety six-well plates are coated with C-terminal specific $A\beta$						
	antibodies recognizing either A β 37, A β 38, A β 40, A β 42, A β 43, or an N-terminal specific A β antibody to detect A β 1–x.						
	Plates are then blocked overnight at 4 °C with 1% bovine serum albumin (BSA) in PBS-T. Plates are washed, and 100 III of cultured cell supernatant or synthetic A β peptide standards and a detection antibody (4G8-HRP) are applied to the blocked plate and incubated overnight at 4 °C. The next day, wells are washed before the addition of detection substrate						
	-	e					
	(TMB peroxidase). Plates are then rea	ad for absorbance at	450 nm on a Moleci	alar Devices Spectra	Max M5e Microplate	
	Reader.						
Biological Data:		Entry	IC50 (nM)	Entry	IC50 (nM)		
Diological Data.		16	25.6	34	90		
		19	25.2	61	56		
		24	54.3	62	72.4		
		25 28	58.5	<u>63</u> 65	25.4		
		30	54.8 20.8	65 68	<u>11.9</u> 30.5		
		50	20.0	00	50.5	l	

Claims:

49 Total claims

40 Composition of matter claims9 Method of use claims

AUTHOR INFORMATION

Corresponding Author

*Tel: 215-707-1085. E-mail: benjamin.blass@temple.edu.

Notes

The authors declare no competing financial interest.